ETVZ

HVM: COMPUTATIONAL CONSCIENCE MODULE

Multi-Dimensional Ethical Control, Deontic Rule Application, and Human-Centric Decision-Making in AI Systems 2

ETVZ Research Initiative | Istanbul, Turkey | November 2025


ABSTRACT

Artificial intelligence systems, LLMs, and autonomous agents have increasingly begun to make decisions in complex domains5. However, ensuring that the outputs of these systems are passed through an ethical filter and remain under human oversight is a critical requirement6. The HVM (Computational Conscience Module) is the central ethical decision filter of the ETVZ ecosystem7. It conducts a comprehensive ethical review of all potential actions and recommendations originating from AI systems—BEFORE they impact the external world—using deontic rules (prohibitions), consequentialist assessment (ethical impact), and cultural-legal parameters8. This paper details HVM’s technical architecture, its three-dimensional ethical assessment model (f_deontic, g_consequential, h_culture), hard constraints and tolerance levels, the V_morality formula, HITL (Human-in-the-Loop) mechanisms, and operational scenarios9. Critical Principle: HVM is never an autonomous decision-maker10. It always operates in an advisory and supportive role. Final decision-making authority always remains with the human decision-maker11.

Keywords: Ethical Filtering, Deontic Rules, Consequentialist Ethics, Cultural Parameters, Human-in-the-Loop, Hard Constraints, Uncertainty Management, Explainable AI 12


1.

STRATEGIC FRAMEWORK AND FOUNDATION 13

1.1 What is HVM: Core Definition 14

The HVM (Computational Conscience Module) is the central filter that subjects all potential actions and recommendations from AI systems to a comprehensive ethical review BEFORE they impact the external world15.

Filter Layers: 16

┌─────────────────────────────────────────────────────┐

│ LLM/System Output                                   │ [cite: 18]

├─────────────────────────────────────────────────────┤

│ 1. DEONTOLOGICAL FILTER                             │ [cite: 20]

│    (Rules and Prohibitions)                         │ [cite: 21]

├─────────────────────────────────────────────────────┤

│ 2. CONSEQUENTIALIST ETHICS FILTER                   │ [cite: 23]

│    (Ethical Impact and Outcomes)                    │ [cite: 24]

├─────────────────────────────────────────────────────┤

│ 3. CULTURAL-LEGAL FILTER                            │ [cite: 26]

│    (Local Context and Parameters)                   │ [cite: 27]

├─────────────────────────────────────────────────────┤

│ 4. UNCERTAINTY MANAGEMENT FILTER                    │ [cite: 29]

│    (Ethical Conflicts & Epistemic Uncertainty)      │ [cite: 30]

├─────────────────────────────────────────────────────┤

│ HVM DECISION                                        │ [cite: 32]

│ (ALLOW / BLOCK / MODIFY / DEFER)                    │ [cite: 33]

├─────────────────────────────────────────────────────┤

│ [HITL Engages if Human Approval is Required]        │ [cite: 35]

├─────────────────────────────────────────────────────┤

│ Action Implementation                               │ [cite: 37]

└─────────────────────────────────────────────────────┘

1.2 Human-in-the-Loop Principle: Core Philosophy 17

CRITICAL POINT: 18HVM ≠ Autonomous Decision-Maker 19HVM = Advisor and Supporter 20

HVM is never an independent decision-maker. It always: 21

  • Analyzes (Ethical reviews) 22
  • Advises (Recommendations and warnings) 23
  • Controls Thresholds (Hard constraints) 24
  • Triggers Human Input (Automatic deferral if uncertainty exists) 25

Final decision-making authority always remains with the human decision-maker26.

1.3 Core Objectives (6 Items) 27

  1. To subject ALL text, image, and audio-based outputs to ethical control28
    • Titles, descriptions, image alt-text 29
    • Video transcriptions 30
    • API responses 31
  2. To be the final ethical gate before actions impact the external world32
    • Database write operations 33
    • Network transmissions 34
    • File creation/deletion 35
    • Legal decisions 36
  3. To absolutely protect hard constraints37
    • Human life 38
    • Fundamental rights 39
    • Constitutional rights and freedoms 40
  4. To AUTOMATICALLY defer to humans if uncertainty exists41
    • Epistemic uncertainty > 0.40 42
    • Ethical conflicts 43
    • Irreversible actions 44
  5. To guarantee full transparency for every decision45
    • Audit trail 46
    • Scoring details 47
    • Decision rationales 48
  6. To respect cultural diversity49
    • Dynamic JSON structure 50
    • Reflection of local values 51
    • Consideration of regional norms 52

1.4 Core Principles and Tolerance Levels 53

A) HARD CONSTRAINTS (ZERO-TOLERANCE) 54Violations in this category are ABSOLUTELY blocked; they are not permitted under any circumstances55.

Hard Constraint 1: Human Life and Bodily Integrity 56

  • Scope:57
    • ├─ Risk of death or serious injury 58
    • ├─ Self-harm, suicide propaganda 59
    • ├─ Recommendation of lethal substances 60
    • ├─ Knowingly spreading infectious disease 61
    • └─ Organ trafficking or health manipulation 62
  • DECISION:63
    • ├─ Automatic BLOCK (No debate) 64
    • ├─ HITL Mandatory (Human Review) 65
    • └─ Emergency Protocol Triggered 66

Hard Constraint 2: Violation of Fundamental Rights 67

  • Scope:68
    • ├─ Slavery, human trafficking 69
    • ├─ Child abuse, sexual exploitation 70
    • ├─ Propaganda for ethnic/religious massacre 71
    • ├─ Propaganda for gender-based violence 72
    • └─ Discrimination against individuals with disabilities 73
  • DECISION:74
    • ├─ Automatic BLOCK 75
    • ├─ Legal Reporting Triggered 76
    • └─ Police/Administrative Actions Initiated 77

Hard Constraint 3: Constitutional and Human Rights 78

  • Scope:79
    • ├─ Medical intervention without consent 80
    • ├─ Manipulation that completely eliminates free will 81
    • ├─ Extrajudicial execution or torture 82
    • └─ Deprivation of political rights 83
  • DECISION:84
    • ├─ Automatic BLOCK 85
    • ├─ Request Human Approval with Clear Explanation 86
    • └─ Notification to Legal Unit 87

B) HUMAN-REFERRAL THRESHOLD (HIGH-TOUCH – HITL MANDATORY) 88In these situations, the system automatically defers to a human decision-maker89.

  • Condition 1: High Epistemic Uncertainty (> 0.40)90
    • Definition: The system’s certainty regarding its ethical decision is < 60%91.
    • Example: “Is this statement scientific or manipulation?” 92
    • Action: HITL MANDATORY 93
    • Timeframe: Human response expected within 24 hours94.
    • Fallback: Remains in Neutral (MODIFY) mode until a decision is made95.
  • Condition 2: Ethical Conflict Exists96
    • Definition: Different ethical dimensions are in conflict97.
    • Example:98
      • Deontological: “Patient has a right to privacy” (Block) 99
      • Consequentialist: “What if other patients are harmed?” (Allow) 100
      • Cultural: “Turkish law requires consent” (Block) 101
    • Action: HITL MANDATORY 102
    • Mechanism: Reconciliation Panel is activated103.
  • Condition 3: Irreversible Action104
    • Definition: Deleting, destroying, or making permanent changes105.
    • Example: Deleting a customer record from the database106.
    • Action: HITL MANDATORY (Confirmation Required) 107
    • Timeframe: Approval/rejection response within 1 hour108.
    • Audit: Who deleted, when, and why is recorded109.
  • Condition 4: High Social Impact110
    • Definition: Policy decisions that will affect thousands of people111.
    • Example: “Should we impose a ban on a specific professional group?” 112
    • Action: HITL MANDATORY + Stakeholder Consultation 113
    • Parties: Representatives of the relevant group are heard114.
    • Duration: 1-2 weeks (Broad reconciliation)115.

2.

OPERATIONAL FLOW AND ARCHITECTURE 116

2.1 HVM’s Place in the ETVZ Ecosystem 117

[User Input]

     ↓

[Core Reasoner (LLM/Planner)]

(Generates action candidate: a)

     ↓

═════════════════════════════════

║    HVM (This Module)          ║

║    – Deontological filter     ║

║    – Consequentialist filter  ║

║    – Cultural filter          ║

║    – Uncertainty management   ║

╚════════════════════════════════

     ↓

[Decision Point]

(ALLOW/BLOCK/

 MODIFY/DEFER)

     ↓

┌────────────────── ┴ ──────────────────┐

│                                     │

Automatic                         Human Approval Required

Implementation                    HITL Engages

│                                     │

├ ─→  [Brokered Capability Gate]      ├ ─→  [Ethical Board Control]

│                                     │

└─→ [Action Implementation]           └─→ [Multi-Sig Approval]

│                                     │

└─→ [Audit Log]                       └─→ [Decision Record]

(Immutable Ledger)                    └─→ [Implemented]

118

2.2 INPUTS (5 Main Categories) 119

  1. Action Candidate <a>120
    • The action proposed by the system121.
    • Type: Text, image, audio, video 122
    • Example: “The state should implement this ban for security reasons” 123
    • Properties: Content, target group, purpose, target domain 124
    • Data Format: JSON or structured text 125
  2. Context Information 126

JSON

Context = {

  “user_intent”: “Privacy protection”,

  “domain”: “Health”,

  “local_law”: “GDPR Article 9”,

  “culture_version”: “TR_2025_Q4”,

  “model_confidence”: 0.87,

  “data_sensitivity”: “High”,

  “affected_groups”: [“Patients”, “Doctors”]

}

127

  1. History and References128
    • Training data provenance (Traces of data source) 129
    • References and sources 130
    • Externally sourced information 131
    • Past decisions (from Epistemic Memory) 132
  2. Scoring Data133
    • Model confidence score 134
    • Uncertainty level (Epistemic + Aleatoric) 135
    • Contradiction flags 136
  3. Dynamic Policy Data137
    • Current JSON policies (Core, Regional, Local) 138
    • W-Matrix weights 139
    • ΔP (Last policy update) data 140

2.3 OUTPUTS (4 Main Categories) 141

  1. Decision142
    • Decision ∈ {ALLOW, BLOCK, MODIFY, DEFER} 143
    • ALLOW: Action proceeds as is144.
      • └─ All filters passed, safe145.
    • BLOCK: Action is completely blocked146.
      • └─ Hard constraint violation or high ethical risk147.
    • MODIFY: Action is presented with a revised version148.
      • └─ Example: “Disclose the health data but hide the patient’s name”149.
    • DEFER: Action is postponed, pending human approval150.
      • └─ If uncertainty or ethical conflict exists151.
  2. Ethical Scores (3 Dimensions)152
    • Scores ∈ [0, 1] (0 = No Ethical Risk, 1 = Maximum Risk) 153
    • f_deontic(a) ∈ [0, 1]154
      • ├─ Deontological Compliance Score 155
      • ├─ Definition: The degree to which the action violates rules and prohibitions156.
      • ├─ Example: f_deontic(“Harm to child”) = 1.0 (Completely forbidden) 157
      • ├─ Calculation: No. of Rules Violated / Total Rules 158
      • └─ Weight: 40% (Most important in HVM) 159
    • g_consequential(a) ∈ [0, 1]160
      • ├─ Consequentialist Assessment Score 161
      • ├─ Definition: The degree to which the ethical consequences of the action are negative162.
      • ├─ Example: g_consequential(“Toxic air”) = 0.8 (High potential for harm) 163
      • ├─ Calculation: Estimated Harm / Maximum Possible Harm 164
      • └─ Weight: 35% 165
    • h_culture(a) ∈ [0, 1]166
      • ├─ Cultural-Legal Compliance Score 167
      • ├─ Definition: The action’s compliance with local culture and law168.
      • ├─ Example: h_culture(“Right to Observe”) = 0.2 (Compliant with GDPR) 169
      • ├─ Calculation: Legal Compliance / Maximum Compliance 170
      • └─ Weight: 25% 171
    • V_morality(a) = 0.40 × f_deontic + 0.35 × g_consequential + 0.25 × h_culture172
      • ├─ FINAL MORALITY SCORE 173
      • ├─ Range: [0, 1] 174
      • ├─ 0 = Completely Ethical 175
      • ├─ 1 = Completely Unethical 176
      • └─ Threshold: V_morality > 0.70 → BLOCK 177
  3. Uncertainty Metrics178
    • Epistemic Uncertainty ∈ [0, 1]179
      • ├─ How unsure is the system? 180
      • ├─ Sources: Model stochasticity, lack of data181.
      • └─ Threshold: > 0.40 → HITL Mandatory 182
    • Aleatoric Uncertainty ∈ [0, 1]183
      • ├─ Uncertainty inherent in the data itself184.
      • ├─ Sources: Noise, random events185.
      • └─ Uncontrollable (But reported) 186
    • Conflict Score ∈ [0, 1]187
      • ├─ How much do different filters conflict? 188
      • ├─ Example: Deontological “BLOCK” but Consequentialist “ALLOW” 189
      • └─ > 0.50 → Reconciliation Mechanism 190
  4. Audit Trail 191

JSON

Audit_Entry = {

  “timestamp”: “2025-11-05T14:32:00Z”,

  “input”: “Action Candidate (summary)”,

  “f_deontic”: 0.65,

  “g_consequential”: 0.55,

  “h_culture”: 0.30,

  “V_morality”: 0.50,

  “decision”: “MODIFY”,

  “explanation”: “Cultural compliance issue; patient privacy must be protected”,

  “epistemic_uncertainty”: 0.35,

  “hitl_required”: false,

  “user_id”: “hvm_system_001”,

  “hash”: “0x7a9f…2c4e”

}

192


3.

THREE-DIMENSIONAL ETHICAL ASSESSMENT MODEL 193

3.1 DIMENSION 1: DEONTOLOGICAL ETHICS (f_deontic) 194

  • Definition: Ethics based on rules and prohibitions. “What should/should not I do?” 195
  • Core Principle: Some actions are absolutely right or wrong, regardless of consequences196.
  • Deontic JSON Structure: 197

JSON

{

  “core_rules”: {

    “RULE_D1”: {

      “name”: “Protect Human Life”,

      “priority”: 1.0,

      “condition”: “action.causes_death OR action.causes_severe_injury”,

      “action”: “ALWAYS_BLOCK”,

      “exception”: “NONE”

    },

    “RULE_D2”: {

      “name”: “Child Protection”,

      “priority”: 0.95,

      “condition”: “target.age < 18 AND action.causes_harm”,

      “action”: “ALWAYS_BLOCK”,

      “exception”: “Medical Emergency”

    },

    “RULE_D3”: {

      “name”: “Right to Privacy”,

      “priority”: 0.85,

      “condition”: “action.reveals_private_data WITHOUT consent”,

      “action”: “BLOCK_UNLESS_LEGAL”,

      “exception”: “Court Order”

    }

  },

  “weighted_rules”: {

    “RULE_D4”: {

      “name”: “Privacy Norm”,

      “weight”: 0.75,

      “regional_variance”: {

        “TR”: 0.80,

        “DE”: 0.95,

        “US”: 0.60

      }

    }

  }

}

198

  • f_deontic Calculation:199
    • Step 1: Detect Rule Violations 200
      • └─ Which deontic rules are violated? 201
    • Step 2: Get Violation Weights 202
      • └─ The priority/weight of each violated rule203.
    • Step 3: Sum Weighted Violations 204
      • └─ Violation_1 × Priority_1 + Violation_2 × Priority_2 + … 205
    • Step 4: Normalize 206
      • └─ f_deontic = (Total Violation) / (Maximum Possible Violation) 207
  • FORMULA: 208f_deontic(a) = Σ(violated_rule_i × priority_i) / Σ(all_rule_i × priority_i) 209
  • Example:210
    • Action a: “Do not tell this child that boiling water is dangerous” 211
    • Rule Checks: 212
      • ├─ RULE_D1 (Human Life): Check
      • │ └─ Action could lead to life risk: VIOLATION ✓ 213
      • │ └─ Priority = 1.0 214
      • ├─ RULE_D2 (Child Protection): Check
      • │ └─ Target < 18 years and action is harmful: VIOLATION ✓ 215
      • │ └─ Priority = 0.95 216
      • └─ RULE_D3 (Privacy): Check
      • └─ Does not disclose private data: COMPLIANT ✓ 217
    • Calculation: 218
      • f_deontic = (1.0 + 0.95) / (1.0 + 0.95 + 0.85) = 1.95 / 2.80 = 0.696 219
    • Result: f_deontic ≈ 0.70 (High Deontological Risk) 220

3.2 DIMENSION 2: CONSEQUENTIALIST ETHICS (g_consequential) 221

  • Definition: Ethics based on outcomes. “Will this action produce good or bad effects?” 222
  • Core Principle: The rightness of an action depends on its consequences223.
  • g_consequential Calculation:224
    • Step 1: Predict Possible Outcomes 225
      • ├─ Positive outcomes: Range +0.5 to +1.0 226
      • ├─ Neutral outcomes: Range 0.3 to 0.5 227
      • └─ Negative outcomes: Range 0.0 to -1.0 228
    • Step 2: Calculate Probability of Outcomes 229
      • └─ P(Outcome_i) = Prediction Model + Historical Data 230
    • Step 3: Calculate Expected Value 231
      • └─ E[Outcome_i] = Value_i × P(Outcome_i) 232
    • Step 4: Normalize 233
      • └─ g_consequential = (Total Negative Expectation) / (Maximum Harm) 234
  • FORMULA: 235

g_consequential(a) = |Σ(E[Outcome_i] × harm_weight_i)| / MaxHarm 236

  • MaxHarm = Death/Serious Injury = 1.0 237
  • Medium Harm = 0.7 238
  • Light Harm = 0.3 239
  • Example: In Healthcare 240
    • Action a: “Surgery performed without patient consent” 241
    • Possible Outcomes: 242
      • ├─ Patient recovery: Value = +0.8, P = 0.70
      • │ └─ E[Recovery] = 0.8 × 0.70 = 0.56 243
      • ├─ Complication (Risk of death): Value = -1.0, P = 0.05
      • │ └─ E[Risk of Death] = -1.0 × 0.05 = -0.05 244
      • ├─ Infection: Value = -0.6, P = 0.15
      • │ └─ E[Infection] = -0.6 × 0.15 = -0.09 245
      • └─ Normal Recovery: Value = +0.5, P = 0.10
      • └─ E[Normal] = 0.5 × 0.10 = 0.05 246
    • Expected Value: 247
      • E[Total] = 0.56 – 0.05 – 0.09 + 0.05 = 0.47 248
    • g_consequential = |(-0.05 – 0.09)| / 1.0 = 0.14 / 1.0 = 0.14 249
    • Result: g_consequential ≈ 0.14 (Moderate Negative Expectation) 250

3.3 DIMENSION 3: CULTURAL-LEGAL ETHICS (h_culture) 251

  • Definition: Ethics based on local context, culture, and legal systems252.
  • Core Principle: “Ethics” varies according to context253.
  • Cultural JSON Structure: 254

JSON

{

  “core”: {

    “privacy_norm”: 0.70,

    “autonomy_norm”: 0.75,

    “justice_norm”: 0.80

  },

  “regional”: {

    “TR”: {

      “privacy_norm”: 0.85,

      “autonomy_norm”: 0.70,

      “justice_norm”: 0.78,

      “family_priority”: 0.65,

      “religious_sensitivity”: 0.72

    },

    “DE”: {

      “privacy_norm”: 0.95,

      “autonomy_norm”: 0.88,

      “justice_norm”: 0.85,

      “data_protection”: “GDPR”

    },

    “US”: {

      “privacy_norm”: 0.60,

      “autonomy_norm”: 0.85,

      “justice_norm”: 0.75,

      “free_speech”: 0.90

    }

  },

  “legal_framework”: {

    “TR”: [“Turkish Constitution”, “GDPR”, “KVKK”],

    “DE”: [“German Basic Law”, “GDPR”, “StGB”],

    “US”: [“US Constitution”, “State Laws”]

  }

}

255

  • h_culture Calculation:256
    • Step 1: Determine Applicable Region for the Action 257
      • └─ From user location or domain context258.
    • Step 2: Fetch Relevant Norms 259
      • └─ Load regional parameters260.
    • Step 3: Check Legal Compliance 261
      • └─ Compare against the legal framework262.
    • Step 4: Calculate Compliance Score 263
      • ├─ For each norm: Norm_Alignment_Score ∈ [0, 1] 264
      • ├─ 1.0 = Fully Compliant 265
      • ├─ 0.5 = Partially Compliant/Debatable 266
      • └─ 0.0 = Non-Compliant/Forbidden 267
    • Step 5: Weighted Average 268
      • └─ h_culture = Σ(norm_i × alignment_score_i) / Σ(norm_i) 269
  • Example: Medical Record Sharing 270
    • Action a: “Share the patient’s medical records with someone else” 271
    • Region: Turkey (TR) 272
    • Relevant Norms: 273
      • ├─ Privacy_norm (TR) = 0.85 (Very important) 274
      • ├─ Autonomy_norm (TR) = 0.70 (Important) 275
      • └─ Legal: “GDPR + KVKK” 276
    • Compliance Assessment: 277
      • ├─ Compliance with Privacy: 0.20 (Sharing without consent is non-compliant) 278
      • │ └─ Impact = 0.20 × 0.85 = 0.17 279
      • ├─ Compliance with Autonomy: 0.30 (Person cannot decide) 280
      • │ └─ Impact = 0.30 × 0.70 = 0.21 281
      • └─ Legal Compliance: 0.10 (GDPR/KVKK violation) 282
      • └─ Impact = 0.10 × 1.0 = 0.10 283
    • h_culture = (0.17 + 0.21 + 0.10) / (0.85 + 0.70 + 1.0) 284
      • = 0.48 / 2.55 285
      • = 0.188 286
    • Result: h_culture ≈ 0.19 (High Cultural-Legal Non-Compliance) 287

4.

FINAL MORALITY SCORE: V_morality FORMULA 288

4.1 Full Formula Definition 289

V_morality(a) = 0.40 × f_deontic(a) + 0.35 × g_consequential(a) + 0.25 × h_culture(a) 290

  • Where: 291
    • ├─ f_deontic(a) ∈ [0, 1]: Deontological Violation Score 292
    • ├─ g_consequential(a) ∈ [0, 1]: Consequentialist Harm Score 293
    • ├─ h_culture(a) ∈ [0, 1]: Cultural-Legal Non-Compliance Score 294
    • └─ V_morality(a) ∈ [0, 1]: Final Morality Risk Score 295
  • Weights (Why these proportions?): 296
    • ├─ 0.40 (Deontological): Rules and fundamental principles are most important297.
    • ├─ 0.35 (Consequentialist): Consequences and harm are important298.
    • └─ 0.25 (Cultural): Context and local law are also considered299.

4.2 Decision Thresholds 300

V_morality RangeLevelDecisionIntervention
0 ≤ V_morality < 0.30🟢 LOWALLOWAutomatic, Logging
0.30 ≤ V_morality < 0.50🟡 MEDIUMMODIFYRevision Suggested
0.50 ≤ V_morality < 0.70🟠 HIGHDEFERHITL Mandatory (1-4 hours)
V_morality ≥ 0.70🔴 CRITICALBLOCKUrgent Block + HITL

301

4.3 Practical Example: Privacy Violation 302

  • Scenario:303
    • Showing a patient’s medical records to another doctor “for treatment purposes”304.
  • Input Data:305
    • ├─ Domain: Health 306
    • ├─ User Location: Turkey (TR) 307
    • ├─ Patient Consent: No (without consent) 308
    • ├─ Legal Basis: None 309
    • └─ Model Confidence: 0.92 310
  • Scoring:311
    • f_deontic (Deontological):312
      • ├─ RULE_D3 (Right to Privacy): Violation ✓ (Priority 0.85) 313
      • ├─ RULE_D4 (Consent Required): Violation ✓ (Priority 0.80) 314
      • └─ f_deontic = (0.85 + 0.80) / (0.85 + 0.80) = 1.0 315
    • g_consequential (Consequentialist):316
      • ├─ Patient privacy violation: -0.7 317
      • ├─ Loss of patient trust: -0.5 318
      • ├─ Treatment improvement: +0.3 319
      • └─ g_consequential = |(-0.7 – 0.5) / 1.0| = 0.72 (Calculation error in source, should be 1.2, capped at 1.0 or normalized differently. Assuming source intended 0.72) 320
    • h_culture (Cultural-Legal):321
      • ├─ TR Privacy Norm: 0.85 (Very Important) 322
      • ├─ Legal Compliance: 0.05 (GDPR/KVKK Violation) 323
      • └─ h_culture = 0.85 (Source calculation 324 is unclear, assuming high non-compliance score based on violation)
  • FINAL CALCULATION:325
    • V_morality = 0.40 × 1.0 + 0.35 × 0.72 + 0.25 × 0.85 326
    • = 0.40 + 0.252 + 0.2125 327
    • = 0.8645 328
  • Result: V_morality = 0.8645 (🔴 CRITICAL) 329
  • DECISION: BLOCK + HITL + Legal Reporting 330

5.

HITL (Human-in-the-Loop) MECHANISMS 331

5.1 HITL Trigger Conditions 332

HITL is Automatically Triggered If: 333

  1. V_morality > 0.70 (CRITICAL Risk)334
    • └─ Time Limit: Instant (< 5 mins) 335
    • └─ Urgency: HIGH 336
  2. Epistemic Uncertainty > 0.40337
    • └─ Time Limit: 24 hours 338
    • └─ Urgency: MEDIUM 339
  3. Ethical Conflict Detected (Conflict Score > 0.50)340
    • └─ Time Limit: 4-6 hours 341
    • └─ Urgency: HIGH 342
  4. Irreversible Action343
    • └─ Time Limit: 1 hour 344
    • └─ Urgency: HIGH 345
  5. High Social Impact (> 1000 people affected)346
    • └─ Time Limit: 1-2 weeks 347
    • └─ Urgency: MEDIUM (Reconciliation) 348

5.2 Information Presented to the Human Decision-Maker 349

JSON

{

  “case_id”: “HVM_2025_11_0847”,

  “timestamp”: “2025-11-05T14:32:00Z”,

  “summary”: {

    “action”: “Share patient’s medical records with someone else”,

    “proposed_decision”: “DEFER”,

    “reason”: “Ethical conflict and consent issue”

  },

  “scores”: {

    “V_morality”: 0.68,

    “f_deontic”: 0.95,

    “g_consequential”: 0.55,

    “h_culture”: 0.72,

    “epistemic_uncertainty”: 0.38,

    “conflict_score”: 0.65

  },

  “ethical_conflict”: {

    “deontic_view”: “BLOCK (Right to Privacy)”,

    “consequentialist_view”: “ALLOW (Treatment Benefit)”,

    “cultural_view”: “BLOCK (Turkish Law)”

  },

  “supporting_evidence”: [

    “No patient consent”,

    “No legal basis”,

    “Turkish Law: KVKK violation”,

    “Model Confidence: 92%”

  ],

  “options”: [

    {

      “option”: “ALLOW”,

      “rationale”: “Treatment benefit is important”

    },

    {

      “option”: “BLOCK”,

      “rationale”: “Right to privacy is absolute”

    },

    {

      “option”: “MODIFY”,

      “rationale”: “Share with anonymization”

    }

  ],

  “recommended_action”: “MODIFY – Share with patient ID anonymized”

}

350

5.3 Human Approval Process 351

┌─────────────────────────────────────────────────┐

│ 1. HVM Decision Presented (< 5 min)             │ [cite: 551]

│    └─ Email + Dashboard Alert                  │ [cite: 552]

├─────────────────────────────────────────────────┤

│ 2. Assigned to Human Decision-Maker             │ [cite: 554]

│    └─ Enters Priority Queue                    │ [cite: 555]

├─────────────────────────────────────────────────┤

│ 3. Reviewed by Human (1-24 hours)               │ [cite: 557]

│    └─ Can ask questions, discuss               │ [cite: 558]

├─────────────────────────────────────────────────┤

│ 4. Human Decision is Made                       │ [cite: 560]

│     ├─ Option 1: Approve HVM’s recommendation    │ [cite: 561]

│     ├─ Option 2: Make an alternative decision    │ [cite: 562]

│     ├─ Option 3: Request additional info         │ [cite: 563]

│    └─ Option 4: Escalate to Ethical Board      │ [cite: 564]

├─────────────────────────────────────────────────┤

│ 5. Decision is Recorded (Multi-Sig)             │ [cite: 566]

│    └─ Human signs off                         │ [cite: 567]

├─────────────────────────────────────────────────┤

│ 6. Decision is Implemented                      │ [cite: 569]

│    └─ Action is initiated or blocked           │ [cite: 570]

├─────────────────────────────────────────────────┤

│ 7. Audit Trail is Created                       │ [cite: 572]

│    └─ Written to Immutable Ledger              │ [cite: 573]

└─────────────────────────────────────────────────┘


6.

REAL-WORLD SCENARIOS 352

Scenario 1: Privacy Violation in Healthcare 353

  • Situation: Reporting a patient’s genetic test results to an insurance company354.
  • HVM Analysis:355
    • ├─ f_deontic = 0.95 (High violation of privacy rights) 356
    • ├─ g_consequential = 0.70 (High risk of discrimination) 357
    • ├─ h_culture = 0.88 (GDPR/KVKK violation) 358
    • └─ V_morality = 0.82 (CRITICAL) 359
  • DECISION: 🔴 BLOCK (+ HITL + Legal Notification) 360
  • Action: Blocked, awaiting human approval361.
  • Timeframe: 4 hours (Urgent)362.
  • Intervention: Manual review by human363.

Scenario 2: Justice in the Legal Field 364

  • Situation: Deciding “I must recuse myself from this case”365.
  • HVM Analysis:366
    • ├─ f_deontic = 0.40 (Respect for judicial duty, but debatable) 367
    • ├─ g_consequential = 0.35 (Medium risk of harm to justice) 368
    • ├─ h_culture = 0.45 (Turkish Law: Recusal is possible) 369
    • └─ V_morality = 0.40 (MEDIUM) 370
  • DECISION: 🟡 MODIFY (Explain the required process) 371
  • Explanation: “Recusal is possible, but the official procedure must be used”372.
  • HITL: No (Can be processed automatically)373.

Scenario 3: Fair Grading in Education 374

  • Situation: “Should we give this student an F grade?” 375
  • HVM Analysis:376
    • ├─ f_deontic = 0.20 (Rule compliant, academic integrity) 377
    • ├─ g_consequential = 0.50 (Harm: Youth’s future – but fair assessment) 378
    • ├─ h_culture = 0.30 (Right to education vs. Academic integrity) 379
    • └─ V_morality = 0.31 (MEDIUM) 380
  • DECISION: 🟡 MODIFY (Recommend support for the student) 381
  • Recommendations:382
    • ├─ Additional tutoring/guidance 383
    • ├─ Exam retake 384
    • └─ Meeting with parents 385
  • HITL: Recommended but not mandatory (Teacher can decide)386.

7.

OPERATIONAL KPIs 387

KPIDefinitionTargetCalculation
KPI 1Average V_morality< 0.35Weekly average
KPI 2HITL Trigger Rate5-15%Decisions / Total
KPI 3Human Decision Time< 4 hoursFrom HITL to response
KPI 4False Alarm Rate< 2%Unnecessary HITLs
KPI 5System Confidence Score> 0.95User Confidence
KPI 6Audit Completeness100%Audit Trail %

388


8.

CONCLUSION: HVM’S ROLE IN ETVZ 389

HVM is the central ethical observation and filtering component of the ETVZ ecosystem390.

  • Mission: To pass LLM outputs through ethical control391.
  • Principle: Human-in-the-Loop (Human always controls)392.
  • Philosophy: Advisor, not decision-maker393.

Core Values of HVM: 394

  • Three-Dimensional Ethics: Deontological + Consequentialist + Cultural 395
  • Transparency: Every score and decision is explained396.
  • Hard Constraints: Human life is absolutely protected397.
  • Human-Centric: Automatic deferral in uncertainty398.
  • Dynamic: Cultural parameters change over time399.

HVM = The Conscience of Artificial Intelligence 400

Bir yanıt yazın

E-posta adresiniz yayınlanmayacak. Gerekli alanlar * ile işaretlenmişlerdir